The emerging field of passive macro-scale tile-based self-assembly (TBSA) shows promise in enabling effective manufacturing processes by harnessing TBSA's intrinsic parallelism. However, current TBSA methodologies still do not fulfill their potentials, largely because such assemblies are often prone to errors, and the size of an individual assembly is limited due to insufficient mechanical stability. Moreover, the instability issue worsens as assemblies grow in size. Using a novel type of magnetically-bonded tiles carried by bristle-bot drives, we propose here a framework that reverses this tendency; i.e., as an assembly grows, it becomes more stable. Stability is achieved by introducing two sets of tiles that move in opposite directions, thus zeroing the assembly net force. Using physics-based computational experiments, we compare the performance of the proposed approach with the common orbital shaking method, proving that the proposed system of tiles indeed possesses self-stabilizing characteristics. Our approach enables assemblies containing hundreds of tiles to be built, while the shaking approach is inherently limited to a few tens of tiles. Our results indicate that one of the primary limitations of mechanical, agitation-based TBSA approaches, instability, might be overcome by employing a swarm of free-running, sensorless mobile robots, herein represented by passive tiles at the macroscopic scale.


翻译:被动大型瓷砖自组(TBSA)的新兴领域显示,通过利用TBSA的内在平行作用,使有效的制造过程变得有希望。然而,目前的TBSA方法仍然不能发挥其潜力,这主要是因为这些组件往往容易出错,而单组体的大小因机械稳定性不足而受到限制。此外,随着组件的大小增长,不稳定问题会更加恶化。我们在此提议一个能够扭转这一趋势的框架,即随着组装的成长,它会变得更加稳定。通过引入两套反向移动的砖块来实现稳定,从而实现组装网的零力。我们使用物理计算实验,将拟议方法的性能与普通轨道摇动方法进行比较,证明拟议的瓷块系统确实具有自我稳定的特点。我们的方法使包含数百个瓷砖的组件能够建立起来,而摇动方法则必然限于数万个砖块。我们的结果显示,通过采用机械化的移动式传感器,通过移动式的移动式传感器,可以克服一个不稳定的移动式系统,通过移动式的机械式的机压缩规模。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月22日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员