项目名称: 高效稳定无毒量子点耗尽型异质结太阳能电池的制备及界面电荷传输机理研究

项目编号: No.51272126

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 林红

作者单位: 清华大学

项目金额: 80万元

中文摘要: 本项目拟通过材料设计和微结构控制,探索纳米表面/界面的电荷传输与复合机理、研究制备高效稳定无毒量子点耗尽型异质结太阳能电池。首先,通过设计制备金属氧化物纳米阵列取代纳米颗粒,与无毒量子点形成p-n异质结,提高电荷分离、注入和传输效率,降低复合及提高电荷寿命;然后通过对二元无毒量子点进行重掺杂,降低金属/量子点界面肖特基势垒宽度,增加空穴隧穿概率;最后在金属/量子点界面引入不同还原程度的石墨烯氧化物作为阴极缓冲层,通过提高空穴传递效率和降低肖特基势垒等,并通过阻挡环境中氧气和水分对量子点腐蚀及阻止金属与量子点表面包覆有机分子间的反应,来提高电池的光电转换性能和长期稳定性。

中文关键词: 铜锌锡硫;无毒量子点;石墨烯复合材料;耗尽型异质结太阳能电池;低维材料

英文摘要: This project aims at preparing highly performed and stable non-toxic quantum dot (QD) depleted-heterojunction solar cells by material designing and microstructure controlling, and exploring the charge transfer and recombination mechanism at the nano surface/interface. Firstly, metal oxide nano-arrays will be designed and employed instead of nano-particles to prepare p-n hererojunction with QD. In this way, charge separation, injection, and transport efficiencies are anticipated to be enhanced, therefore recombination will be inhibited and electron lifetime will be enlarged; Then the binary semiconductor will be doped to obtain heavily doped p-QD, expected to reduce the Schottky barrier width on the surface of metal/QD and enlarge the hole tunneling possiblities; Finally, the reductive graphene oxide (RGO)will be incorporated between metal and QD serving as cathode buffer layer, which was promising to improve the hole transfer efficiencies and reduce the Schottky barrier. Besides, RGO could protect the QD from being attacked by the oxygen and water in the air and prevent the reaction between the metal and the organic molecules on the QD surface, leading to enhanced photovoltaic performance and long-term stability.

英文关键词: CZTS;Nontoxic quantum dots;Graphene composite;Depleted heterojunction solar cell;Low-dimensional materials

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
22+阅读 · 2019年11月7日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
【Manning2020新书】Elm 实战,344页pdf,Elm in Action
专知会员服务
49+阅读 · 2020年4月14日
【电子书】Flutter实战305页PDF免费下载
专知会员服务
22+阅读 · 2019年11月7日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员