Normality, in the colloquial sense, has historically been considered an aspirational trait, synonymous with harmony and ideality. The arithmetic average has often been used to characterize normality, and is often used both productively and unproductively as a blunt way to characterize samples and outliers. A number of prior commentaries in the fields of psychology and social science have highlighted the need for caution when reducing complex phenomena to a single mean value. However, to the best of our knowledge, none have described and explained why the mean provides such a poor characterization of normality, particularly in the context of multi-dimensionality and outlier detection. We demonstrate that even for datasets with a relatively low number of dimensions ($<10$), data start to exhibit a number of peculiarities which become progressively severe as the number of dimensions increases. The availability of large, multi-dimensional datasets is increasing, and it is therefore especially important that researchers understand the peculiar characteristics of such data. We show that normality can be better characterized with `typicality', an information theoretic concept relating to the entropy of a distribution. An application of typicality to both synthetic and real-world data reveals that in multi-dimensional space, to be normal (or close to the mean) is actually to be highly atypical. This motivates us to update our working definition of an outlier, and we demonstrate typicality for outlier detection as a viable method which is consistent with this updated definition. In contrast, whilst the popular Mahalanobis based outlier detection method can be used to identify points far from the mean, it fails to identify those which are too close. Typicality can be used to achieve both, and performs well regardless of the dimensionality of the problem.


翻译:从学术意义上讲,常态在历史上一直被认为是一种渴望的特征,与和谐和理想的同义词。算术平均数常常被用来描述常态特征,而且常常被用在生产上和非生产性上,作为描述样品和外层的钝器。心理学和社会科学领域的一些先前评论强调,在将复杂现象降低到单一中值时,需要谨慎行事。然而,据我们所知,没有任何人描述和解释,为什么该平均值提供了这种常态的差异性特征,特别是在多维度和异端检测方面。我们证明,即使对于规模相对较少的数据集( < 1 000美元),也常常使用算算算算算算算,数据开始显示出随着尺寸的增加而逐渐变得严重的一些奇特性。大量多维数据集的可用性正在增加,因此尤为重要的是,研究人员必须了解这些数据的奇特性。我们表明,正常的特征可以用“常态性”来描述,一种与近维度分布相关的信息理论概念。我们从一个典型的典型的数据集到一个更接近的普通的探测方法,从一个更接近的状态到一个更接近的探测方法,从一个更接近的状态到一个更接近的状态,从一个更接近的探测方法可以显示,从一个更接近的状态到一个更接近的、更接近的探测方法,从一个更接近地显示,从一个更接近地、更接近地、更接近地在多维系地显示,从一个正常的探测方法可以用来在多维系地方法。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员