We revisit the classical problem of band-limited signal reconstruction -- a variant of the \emph{Set Query} problem -- which asks to efficiently reconstruct (a subset of) a $d$-dimensional Fourier-sparse signal ($\|\widehat{x}(t)\|_0 \leq k$), from minimum \emph{noisy} samples of $x(t)$ in the time domain. We present a unified framework for this problem, by developing a theory of sparse Fourier transforms over \emph{lattices}, which can be viewed as a ``semi-continuous'' version of SFT, in-between discrete and continuous domains. Using this framework, we obtain the following results: $\bullet$ *High-dimensional Fourier sparse recovery* We present a sample-optimal discrete Fourier Set-Query algorithm with $O(k^{\omega+1})$ reconstruction time in one dimension, \emph{independent} of the signal's length ($n$) and $\ell_\infty$-norm ($R^* \approx \|\widehat{x}\|_\infty$). This complements the state-of-art algorithm of [Kapralov, STOC 2017], whose reconstruction time is $\tilde{O}(k \log^2 n \log R^*)$, and is limited to low-dimensions. By contrast, our algorithm works for arbitrary $d$ dimensions, mitigating the $\exp(d)$ blowup in decoding time to merely linear in $d$. Our algorithm also works for the semi-continuous case where frequencies lie on a lattice. $\bullet$ *High-accuracy Fourier interpolation* We design a polynomial-time $(1+ \sqrt{2} +\epsilon)$-approximation algorithm for continuous Fourier interpolation. This bypasses a barrier of all previous algorithms [Price and Song, FOCS 2015, Chen, Kane, Price and Song, FOCS 2016] which only achieve $c>100$ approximation for this basic problem. Our algorithm relies on several new ideas of independent interests in signal estimation, including high-sensitivity frequency estimation and new error analysis with sharper noise control.


翻译:我们重新审视了带宽信号重建的经典问题 -- -- 一种变异的方程式, 一种变异的方程式, 一种变异的运算, 一种变异的运算, 一种变异的运算, 要求高效地重建( 一个子集) 一个美元维度的Fourier- spart信号( 一个元xxxx) (t) 0\leqk k$), 以最小量的xx( t) 样本 。 我们展示了一个统一的框架, 通过开发一个稀疏的 Fourier 变异的理论, 而不是直流的( 直径{ 线性), 可以被看成一个100美元基底的SFTFT版本。 使用这个框架,我们获得以下结果: $\bull 美元* 高度的Fourthmredi recremeal reconstation * 美元xlation.

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月10日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员