Homomorphic secret sharing (HSS) allows multiple input clients to secret-share their data among multiple servers such that each server is able to locally compute a function on its shares to obtain a partial result and all partial results enable the reconstruction of the function's value on the outsourced data by an output client. The existing HSS schemes for {\em high-degree} polynomials either {\em require a large number of servers} or {\em lack verifiability}, which is essential for ensuring the correctness of the outsourced computations. In this paper, we propose a two-server verifiable HSS (VHSS) model and construct a scheme that supports the computation of high-degree polynomials. The degree of the outsourced polynomials can be as high as a polynomial in the system's security parameter. Despite of using only 2 servers, our VHSS ensures that each single server learns no information about the outsourced data and no single server is able to persuade the client to output a wrong function value. Our VHSS is significantly more efficient. When computing degree-7 polynomials, our scheme could be 3-10 times faster than the previously best construction.


翻译:多输入的共享( HSS) 允许多个输入客户在多个服务器中秘密共享数据, 以便让每个服务器能够本地计算其共享的函数, 以获得部分结果, 而所有部分结果都能够让输出客户重建外部数据中的函数值。 现有的 超高度多边共享 HSS 方案, 或需要大量服务器, 或缺乏可核实性, 这对于确保外包计算正确性至关重要 。 在本文中, 我们提出一个两个服务器可核实的 HSS (VHSS) 模型, 并构建一个支持高度多面度计算的方案 。 外包多面值的程度可以像系统安全参数中的一个多面值一样高 。 尽管只使用两个服务器, 我们的 VHSS 方案可以确保每个服务器都得不到关于外包数据的任何信息, 并且没有一个服务器能够说服客户输出错误的函数值 。 我们的 VHSS (VHSS) 模式非常高效 。 在计算高度-7 多元面值时, 之前的构建速度可能比最高 3- 10 次 。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Differentially Private Quantiles
Arxiv
0+阅读 · 2021年6月15日
Arxiv
0+阅读 · 2021年6月14日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员