Large organizations that collect data about populations (like the US Census Bureau) release summary statistics that are used by multiple stakeholders for resource allocation and policy making problems. These organizations are also legally required to protect the privacy of individuals from whom they collect data. Differential Privacy (DP) provides a solution to release useful summary data while preserving privacy. However, most DP mechanisms are designed to answer a single set of queries and optimize the total accuracy. In reality, there are often multiple stakeholders that use a given data release and have overlapping but not-identical queries. This introduces a novel joint optimization problem in DP where the privacy budget must be shared among different analysts. In this work, we initiate study into the problem of DP query answering across multiple analysts. To capture the competing goals and priorities of multiple analysts, we formulate three desiderata that any mechanism should satisfy in this setting -- The Sharing Incentive, Non-Interference, and Workload Adaptivity -- while still optimizing for overall error. We demonstrate how existing DP query answering mechanisms in the multi-analyst settings fail to satisfy at least one of the desiderata. We present novel DP algorithms that provably satisfy all our desiderata and empirically show that they incur low error on realistic tasks.


翻译:收集人口数据的大型组织(如美国人口普查局)发布关于人口的数据的简要统计数据(如美国人口普查局)发布汇总统计数据,供多个利益攸关方用于资源分配和决策问题。这些组织在法律上也被要求保护个人隐私,以保护他们收集数据的个人隐私。不同的隐私(DP)提供了在保护隐私的同时发布有用的简要数据的解决方案。然而,大多数DP机制的设计都是为了回答单一的询问和优化总体准确性。在现实中,经常有多个利益攸关方使用特定数据发布,并有重叠但非同质的查询。这在DP中引入了一个全新的联合优化问题,因为隐私预算必须由不同分析家共享。在这项工作中,我们开始研究多个分析家对DP查询的回答问题。为了捕捉多个分析家的相互竞争的目标和优先事项,我们制定了三种偏差,任何机制都应该在这个环境中满足 -- -- 共享激励、非干涉和工作适应性 -- -- 同时仍然优化总体错误。我们展示了在多分析环境中现有的DP查询机制如何至少不能满足一个不相容的不全局性。我们提出了新的DP演算方法,以现实的方式解决所有低度任务。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员