Predictive control, which is based on a model of the system to compute the applied input optimizing the future system behavior, is by now widely used. If the nominal models are not given or are very uncertain, data-driven model predictive control approaches can be employed, where the system model or input is directly obtained from past measured trajectories. Using a data informativity framework and Finsler's lemma, we propose a data-driven robust linear matrix inequality-based model predictive control scheme that considers input and state constraints. Using these data, we formulate the problem as a semi-definite optimization problem, whose solution provides the matrix gain for the linear feedback, while the decisive variables are independent of the length of the measurement data. The designed controller stabilizes the closed-loop system asymptotically and guarantees constraint satisfaction. Numerical examples are conducted to illustrate the method.
翻译:预测控制基于一个计算应用输入优化未来系统行为的系统模型,现已广泛使用。如果没有给出名义模型或这种模型非常不确定,则可以采用数据驱动模型预测控制方法,即系统模型或输入直接从过去测量的轨迹中获取。我们利用一个数据信息化框架和Finsler的 Lemma,提出一个以数据驱动的强有力的线性矩阵模型预测控制方案,其中考虑到输入和状态限制。我们使用这些数据,将问题表述为半定型优化问题,其解决方案为线性反馈提供了矩阵收益,而决定性变量与测量数据长度无关。设计控制器将闭环系统稳定在零时间上,保证抑制满足性。用数字示例来说明方法。</s>