Modeling human personality is important for several AI challenges, from the engineering of artificial psychotherapists to the design of persona bots. However, the field of computational personality analysis heavily relies on labeled data, which may be expensive, difficult or impossible to get. This problem is amplified when dealing with rare personality types or disorders (e.g., the anti-social psychopathic personality disorder). In this context, we developed a text-based data augmentation approach for human personality (PEDANT). PEDANT doesn't rely on the common type of labeled data but on the generative pre-trained model (GPT) combined with domain expertise. Testing the methodology on three different datasets, provides results that support the quality of the generated data.
翻译:模拟人的个性对于大赦国际的若干挑战非常重要,从人工心理治疗师的工程设计到人造机器人的设计,但是,计算人格分析领域严重依赖标签数据,这些数据可能昂贵、难以或不可能获得,在处理罕见的个性类型或疾病(例如反社会精神病人格障碍)时,这一问题会更加严重。在这方面,我们为人的个性制定了基于文字的数据增强方法(PEDANT)。PEDANT并不依赖通用的标签数据类型,而是依赖基因化的预培训模型(GPT)和域域内专门知识。测试三种不同的数据集的方法,可以提供支持生成数据质量的结果。