In this paper we consider Orthogonal Time Frequency Space (OTFS) modulation based multiple-access (MA). We specifically consider Orthogonal MA methods (OMA) where the user terminals (UTs) are allocated non-overlapping physical resource in the delay-Doppler (DD) and/or time-frequency (TF) domain. To the best of our knowledge, in prior literature, the performance of OMA methods have been reported only for ideal transmit and receive pulses. In [20] and [21], OMA methods were proposed which were shown to achieve multi-user interference (MUI) free communication with ideal pulses. Since ideal pulses are not realizable, in this paper we study the spectral efficiency (SE) performance of these OMA methods with practical rectangular pulses. For these OMA methods, we derive the expression for the received DD domain symbols at the base station (BS) receiver and the effective DD domain channel matrix when rectangular pulses are used. We then derive the expression for the achievable sum SE. These expressions are also derived for another well known OMA method where guard bands (GB) are used to reduce MUI (called as the GB based MA methods) [19]. Through simulations, we observe that with rectangular pulses the sum SE achieved by the method in [21] is almost invariant of the Doppler shift and is higher than that achieved by the methods in [19], [20] at practical values of the received signal-to-noise ratio.


翻译:在本文中,我们考虑了基于Orthogon 时间频率空间(OTFS) 调制基于多存(MA) 的调制法。 我们特别考虑了 Orthogonal MA 方法(OMA), 即用户终端(UTs) 在延迟- Doppler (DD) 和/或时频(TF) 域中分配不重叠的物理资源。 根据我们的知识, 在以前的文献中, OMA 方法的性能仅用于理想的传输和接收脉冲。 在 [20] 和 [21] 中, 提出了显示可实现多用户干扰(MUI) 与理想脉冲的自由信号通信的方法。 由于理想脉冲无法实现, 理想脉冲(OMA) 理想脉冲(OMA) 方法(OMA) 的光谱效率(SE) 性能(SESE) 性能(SOD) 性能(SOD) 性能(MI) 方法(MUI) 和MI(MI) (MBI) 的变压方法(MGB) 实现的MU) 。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2021年8月20日
专知会员服务
76+阅读 · 2021年3月16日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
专知会员服务
52+阅读 · 2020年9月7日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
9+阅读 · 2021年6月21日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员