In sequence-to-sequence tasks, sentences with heterogeneous semantics or grammatical structures may lead to some difficulties in the model's convergence. To resolve this problem, we introduce a feature-concentrated model that focuses on each of the heterogeneous features in the input-output sequences. Building upon the encoder-decoder architecture, we design a latent-enhanced multi-filter sequence-to-sequence model (LMS2S) that analyzes the features preserved by latent space representations and constructs the outputs accordingly. We divide the latent space into subspaces using a clustering algorithm and train a set of decoders in which each decoder only concentrates on the features from its corresponding subspace. We then design a self-enhancing mechanism that uses reinforcement learning to optimize the clustering algorithm. We perform two sets of experiments on semantic parsing and machine translation. We empirically demonstrate the advantages of the multi-filter architecture and show the performance improvement made by the self-enhancing mechanism.
翻译:在序列到序列任务中,带有不同语义或语法结构的句子可能导致模型趋同的某些困难。 为了解决这个问题, 我们引入了一个以输入- 输出序列中各异特征为重点的特征集中模型。 我们以编码器- 解码器结构为基础, 设计了一个潜在增强的多过滤器序列到序列模型(LMS2S), 分析由潜在空间表示保存的特征, 并据此构建输出结果。 我们使用组合算法将潜空分割为子空间, 并训练一套解码器, 每个解码器只集中在相应的子空间的特征上。 然后我们设计一个自我增强机制, 利用强化学习优化组合算法。 我们在语义分立和机器翻译方面进行两组实验。 我们用实验方式展示了多过滤器结构的优势, 并展示了自增强机制的性能改进。