Automated image captioning is one of the applications of Deep Learning which involves fusion of work done in computer vision and natural language processing, and it is typically performed using Encoder-Decoder architectures. In this project, we have implemented and experimented with various flavors of multi-modal image captioning networks where ResNet101, DenseNet121 and VGG19 based CNN Encoders and Attention based LSTM Decoders were explored. We have studied the effect of beam size and the use of pretrained word embeddings and compared them to baseline CNN encoder and RNN decoder architecture. The goal is to analyze the performance of each approach using various evaluation metrics including BLEU, CIDEr, ROUGE and METEOR. We have also explored model explainability using Visual Attention Maps (VAM) to highlight parts of the images which has maximum contribution for predicting each word of the generated caption.


翻译:自动图像字幕是深层学习的应用之一,它涉及计算机视觉和自然语言处理方面所做工作的结合,通常使用Encoder-Decoder结构进行。在这个项目中,我们实施并试验了多种多式图像字幕网络的口味,其中探索了ResNet101、DenseNet121和VGG19的CNN Encorders和关注制LSTM 代碼器。我们研究了波束尺寸的影响以及使用预先训练的字嵌入器,并将其与CNN 编码器和 RNN 脱coder 基本结构进行比较。我们的目标是利用各种评估指标,包括BLEU、CIDER、ROOGE和METEOR,分析每种方法的性能。我们还探索了利用视觉关注图(VAM)来突出图像中对预测生成的每个词的最大贡献的部分。

0
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Exploring Visual Relationship for Image Captioning
Arxiv
14+阅读 · 2018年9月19日
Image Captioning based on Deep Reinforcement Learning
Recurrent Fusion Network for Image Captioning
Arxiv
3+阅读 · 2018年7月31日
Arxiv
7+阅读 · 2018年4月21日
Arxiv
3+阅读 · 2018年3月14日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
自适应注意力机制在Image Caption中的应用
PaperWeekly
10+阅读 · 2018年5月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
CVPR2017有哪些值得读的Image Caption论文?
PaperWeekly
10+阅读 · 2017年11月29日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员