Longitudinal processes are often associated with each other over time; therefore, it is important to investigate the associations among developmental processes and understand their joint development. The latent growth curve model (LGCM) with a time-varying covariate (TVC) provides a method to estimate the TVC's effect on a longitudinal outcome while simultaneously modeling the outcome's change. However, it does not allow the TVC to predict variations in the random growth coefficients. We propose decomposing the TVC's effect into initial trait and temporal states using three methods to address this limitation. In each method, the baseline of the TVC is viewed as an initial trait, and the corresponding effects are obtained by regressing random intercepts and slopes on the baseline value. Temporal states are characterized as (1) interval-specific slopes, (2) interval-specific changes, or (3) changes from the baseline at each measurement occasion, depending on the method. We demonstrate our methods through simulations and real-world data analyses, assuming a linear-linear functional form for the longitudinal outcome. The results demonstrate that LGCMs with a decomposed TVC can provide unbiased and precise estimates with target confidence intervals. We also provide OpenMx and Mplus 8 code for these methods with commonly used linear and nonlinear functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

视觉计算机(TVC)期刊发布关于捕捉,识别,建模,分析和生成形状和图像的所有研究领域的文章。它包括图像理解,用于图形的机器学习和3D制作。还覆盖以下主题:3D重建、电脑动画、计算结构、计算几何、计算摄影计算机图形学的计算机视觉、图形数据压缩、几何造型、几何加工、人机交互和计算机图形学、人体建模、图像分析、基于图像的渲染、图像处理、图形机器学习、医学影像、模式识别、基于物理的建模、照明和渲染方法 、 机器人与视觉、显着方法、科学可视化、形状和表面建模、形状分析和图像检索、形状匹配、基于草图的建模、实体建模、程式化的渲染、贴图、虚拟和增强现实、视觉分析、体积渲染。 官网地址:http://dblp.uni-trier.de/db/journals/vc/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员