Causal structure learning is a key problem in many domains. Causal structures can be learnt by performing experiments on the system of interest. We address the largely unexplored problem of designing a batch of experiments that each simultaneously intervene on multiple variables. While potentially more informative than the commonly considered single-variable interventions, selecting such interventions is algorithmically much more challenging, due to the doubly-exponential combinatorial search space over sets of composite interventions. In this paper, we develop efficient algorithms for optimizing different objective functions quantifying the informativeness of a budget-constrained batch of experiments. By establishing novel submodularity properties of these objectives, we provide approximation guarantees for our algorithms. Our algorithms empirically perform superior to both random interventions and algorithms that only select single-variable interventions.
翻译:原因结构学习是许多领域的一个关键问题。 可以通过在利益系统上进行实验来学习产物结构。 我们解决了设计一组实验,每个实验同时干预多个变量这一基本上尚未探讨的问题。 虽然选择这类干预可能比通常认为的单一变量干预更具信息性,但从逻辑上说,由于对一组复合干预的双重穷困组合搜索空间,选择此类干预更具挑战性。 在本文中,我们开发了高效的算法,优化不同客观功能,量化预算限制的一组实验的信息性。 通过建立这些目标的新颖的亚模式特性,我们为我们的算法提供了近似保证。 我们的算法在经验上优于随机干预和仅选择单一变量干预的算法。