We study the problem of predicting student knowledge acquisition in online courses from clickstream behavior. Motivated by the proliferation of eLearning lecture delivery, we specifically focus on student in-video activity in lectures videos, which consist of content and in-video quizzes. Our methodology for predicting in-video quiz performance is based on three key ideas we develop. First, we model students' clicking behavior via time-series learning architectures operating on raw event data, rather than defining hand-crafted features as in existing approaches that may lose important information embedded within the click sequences. Second, we develop a self-supervised clickstream pre-training to learn informative representations of clickstream events that can initialize the prediction model effectively. Third, we propose a clustering guided meta-learning-based training that optimizes the prediction model to exploit clusters of frequent patterns in student clickstream sequences. Through experiments on three real-world datasets, we demonstrate that our method obtains substantial improvements over two baseline models in predicting students' in-video quiz performance. Further, we validate the importance of the pre-training and meta-learning components of our framework through ablation studies. Finally, we show how our methodology reveals insights on video-watching behavior associated with knowledge acquisition for useful learning analytics.
翻译:我们研究在网上课程中从点击流行为中预测学生知识获取的问题。受电子学习讲座提供量激增的驱动,我们特别侧重于在讲座视频中学生在视频中的活动,包括内容和视频问答。我们预测在视频中测试性能的方法是基于我们开发的三个关键理念。首先,我们通过在原始事件数据上运行的时间序列学习结构来模拟学生的点击行为,而不是像在现有的方法中那样界定手动制作的功能,这些功能可能丢失了在点击序列中嵌入的重要信息。第二,我们开发了自上而下的点击流预培训,以学习能够有效初始化预测模型的点击流事件的信息化演示。第三,我们建议将导引导的基于元学习的培训组合起来,优化预测模型,以利用学生点击流序列中常见模式的组合。通过对三个真实世界数据集的实验,我们证明我们的方法在预测学生在视频测试性表现中的两种基线模型中得到了重大改进。此外,我们验证了我们框架的预培训和元学习组成部分的重要性,通过学习感官研究方法,我们如何展示了我们有用的视觉观察方法。