We introduce a new general framework for the approximation of evolution equations at low regularity and develop a new class of schemes for a wide range of equations under lower regularity assumptions than classical methods require. In contrast to previous works, our new framework allows a unified practical formulation and the construction of the new schemes does not rely on any Fourier based expansions. This allows us for the first time to overcome the severe restriction to periodic boundary conditions, to embed in the same framework parabolic and dispersive equations and to handle nonlinearities that are not polynomial. In particular, as our new formalism does no longer require periodicity of the problem, one may couple the new time discretisation technique not only with spectral methods, but rather with various spatial discretisations. We apply our general theory to the time discretization of various concrete PDEs, such as the nonlinear heat equation, the nonlinear Schr\"odinger equation, the complex Ginzburg-Landau equation, the half wave and Klein--Gordon equations, set in $\Omega \subset \mathbb{R}^d$, $d \leq 3$ with suitable boundary conditions.
翻译:我们引入了一个新的通用框架,以近似低常规度进化方程,并开发了与古典方法相比常规性假设要求较低的一系列广泛方程的新型计划类别。与以往的工程不同,我们的新框架允许统一务实的制定,而新计划的构建并不依赖于基于Fourier的扩展。这使我们第一次能够克服对定期边界条件的严格限制,将参数和分散方程嵌入同一个框架,并处理非多元性的非线性方程。特别是,由于我们的新形式不再需要问题的周期性,人们可以将新的时间离散技术不仅与光谱方法,而且与各种空间离散技术相配。我们把我们的一般理论应用于各种混混凝土PDE的时间分解,例如非线性热方程、非线性Schr\'dogener方程、复杂的Ginzburg-Landau方程、半波和克莱因-哥登方程,其设置为$\Omega Sub$\mathbbble==d driet 3 drietments。