Sequential Recommendation characterizes the evolving patterns by modeling item sequences chronologically. The essential target of it is to capture the item transition correlations. The recent developments of transformer inspire the community to design effective sequence encoders, \textit{e.g.,} SASRec and BERT4Rec. However, we observe that these transformer-based models suffer from the cold-start issue, \textit{i.e.,} performing poorly for short sequences. Therefore, we propose to augment short sequences while still preserving original sequential correlations. We introduce a new framework for \textbf{A}ugmenting \textbf{S}equential \textbf{Re}commendation with \textbf{P}seudo-prior items~(ASReP). We firstly pre-train a transformer with sequences in a reverse direction to predict prior items. Then, we use this transformer to generate fabricated historical items at the beginning of short sequences. Finally, we fine-tune the transformer using these augmented sequences from the time order to predict the next item. Experiments on two real-world datasets verify the effectiveness of ASReP. The code is available on \url{https://github.com/DyGRec/ASReP}.
翻译:序列建议 通过按时间顺序对项目序列进行建模来描述变化模式。 它的基本目标是捕捉项目转换关系。 最近变压器的开发激励社区设计有效的序列编码器、\ textit{ e. g.} SASRec 和 BERT4Rec 。 然而, 我们观察到这些变压器模型受冷启动问题的困扰,\ textit{ i. e.} 在短顺序中表现不佳。 因此, 我们提议在保存原始序列关联的同时增加短序列。 我们为\ textbf{ A} 启动一个新的框架。 我们引入了一个新的框架, 用于\ textbf{ \\ textbf{S} 后序\ textbf{ re} 社区设计有效的序列编码, 用\ textb{ P} seudo- prior 项~ (ASREP) 。 我们首先准备将一个变压器, 其序列以相反的方向来预测之前的项目。 然后, 我们用这个变压器在短顺序开始生成历史项目。 最后, 我们微调的变压器在两个 ASB/ requalsetrb/ regeter 上使用这些变压器 正在更新的 将这些变动器 更新到这些变动的序列。