Predicting personality traits based on online posts has emerged as an important task in many fields such as social network analysis. One of the challenges of this task is assembling information from various posts into an overall profile for each user. While many previous solutions simply concatenate the posts into a long document and then encode the document by sequential or hierarchical models, they introduce unwarranted orders for the posts, which may mislead the models. In this paper, we propose a dynamic deep graph convolutional network (D-DGCN) to overcome the above limitation. Specifically, we design a learn-to-connect approach that adopts a dynamic multi-hop structure instead of a deterministic structure, and combine it with a DGCN module to automatically learn the connections between posts. The modules of post encoder, learn-to-connect, and DGCN are jointly trained in an end-to-end manner. Experimental results on the Kaggle and Pandora datasets show the superior performance of D-DGCN to state-of-the-art baselines. Our code is available at https://github.com/djz233/D-DGCN.
翻译:在社交网络分析等许多领域,基于在线职位的预测人格特征已成为一项重要任务。这项任务的挑战之一是将各种职位的信息汇集成供每个用户使用的总体概况。虽然许多先前的解决办法只是将这些职位合并成一个长的文件,然后按顺序或等级将文件编码,但它们为这些职位引入了不必要的命令,这可能误导模式。在本文件中,我们提议建立一个动态的深图共变网络(D-DGCN),以克服上述限制。具体地说,我们设计了一种学习连接方法,采用动态的多窗口结构,而不是确定性结构,并将它与DGCN模块结合起来,自动学习各职位之间的联系。后编码器、学习连接和DGCN模块以端到端的方式联合培训。Kaggle和Pandora数据集的实验结果显示DGCN的优异性业绩,以至最先进的基准。我们的代码可在https://github.com/djz233/DGNG中查阅。