In a minimum cost submodular cover problem (MinSMC), given a monotone non-decreasing submodular function $f\colon 2^V \rightarrow \mathbb{Z}^+$, a cost function $c: V\rightarrow \mathbb R^{+}$, an integer $k\leq f(V)$, the goal is to find a subset $A\subseteq V$ with the minimum cost such that $f(A)\geq k$. MinSMC has a lot of applications in machine learning and data mining. In this paper, we design a parallel algorithm for MinSMC which obtains a solution with approximation ratio at most $\frac{H(\min\{\Delta,k\})}{1-5\varepsilon}$ with probability $1-3\varepsilon$ in $O(\frac{\log m\log n\log^2 mn}{\varepsilon^4})$ rounds, where $\Delta=\max_{v\in V}f(v)$, $H(\cdot)$ is the Hamornic number, $n=f(V)$, $m=|V|$ and $\varepsilon$ is a constant in $(0,\frac{1}{5})$. This is the first paper obtaining a parallel algorithm for the weighted version of the MinSMC problem with an approximation ratio arbitrarily close to $H(\min\{\Delta,k\})$.
翻译:在最低成本子模块覆盖问题( MinSMC ) 中, 考虑到单调的非减值子模块函数 $f\ cron 2\ V\ rightrow\ mathbb $, 成本函数 $c: V\rightrow\ mathbb R $, 整金k\leq f( V) 美元, 目标是在最低成本为 $f( A)\ subseteq V$( geq k$) 找到一个子 $A\ subseq V$。 MinSMC 在机器学习和数据挖掘方面有许多应用。 在本文中, 我们为 MinSMC 设计一个平行算法, 以最接近率 $\\\ h( min\ delta, k) 1-5\ varepsilon$( 1-3\ varepsil) 美元, 美元( leglegn= $) 美元( dirmax) 美元( dirmax $) 和 an- anc= 美元( 美元)。