A key bottleneck of employing state-of-the-art semantic segmentation networks in the real world is the availability of training labels. Standard semantic segmentation networks require massive pixel-wise annotated labels to reach state-of-the-art prediction quality. Hence, several works focus on semantic segmentation networks trained with only image-level annotations. However, when scrutinizing the state-of-the-art results in more detail, we notice that although they are very close to each other on average prediction quality, different approaches perform better in different classes while providing low quality in others. To address this problem, we propose a novel framework, AutoEnsemble, which employs an ensemble of the "pseudo-labels" for a given set of different segmentation techniques on a class-wise level. Pseudo-labels are the pixel-wise predictions of the image-level semantic segmentation frameworks used to train the final segmentation model. Our pseudo-labels seamlessly combine the strong points of multiple segmentation techniques approaches to reach superior prediction quality. We reach up to 2.4% improvement over AutoEnsemble's components. An exhaustive analysis was performed to demonstrate AutoEnsemble's effectiveness over state-of-the-art frameworks for image-level semantic segmentation.


翻译:在现实世界中,使用最先进的语义分解网络的一个关键瓶颈是培训标签的可用性。标准语义分解网络需要大量的像素分解标签,以达到最先进的预测质量。因此,一些工作的重点是只用图像级别注释来训练的语义分解网络。然而,当对最新语义分解网络进行更细致的审查时,我们注意到,虽然在平均预测质量方面它们彼此非常接近,但不同方法在不同类别中表现更好,而在其他类别中则提供低质量。为解决这一问题,我们提议了一个新颖的框架,即AutoEngble,它使用“假语-标签”的组合来达到最先进的预测质量。我们用AutoEmple-lable来显示一个等级层次上不同分解技术的一套特定组合。Pseudo-lables是用于培训最后分解模型的像级框架的精度预测。我们的伪语义标签无缝地结合了多个分解技术的强点,以达到高级预测质量。我们用Aute-Eng-Annex imal imal imal ims ass real ass ass laction to laud lauds totototototototototototototost atost flaudation</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月3日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员