The extremely sensitive and highly nonlinear search space of interplanetary transfer trajectory design bring about big challenges on global optimization. As a representative, the current known best solution of the global trajectory optimization problem (GTOP) designed by the European space agency (ESA) is very hard to be found. To deal with this difficulty, a powerful differential evolution-based optimization tool named COoperative Differential Evolution (CODE) is proposed in this paper. CODE employs a two-stage evolutionary process, which concentrates on learning global structure in the earlier process, and tends to self-adaptively learn the structures of different local spaces. Besides, considering the spatial distribution of global optimum on different problems and the gradient information on different variables, a multiple boundary check technique has been employed. Also, Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES) is used as a local optimizer. The previous studies have shown that a specific swarm intelligent optimization algorithm usually can solve only one or two GTOP problems. However, the experimental test results show that CODE can find the current known best solutions of Cassini1 and Sagas directly, and the cooperation with CMA-ES can solve Cassini2, GTOC1, Messenger (reduced) and Rosetta. For the most complicated Messenger (full) problem, even though CODE cannot find the current known best solution, the found best solution with objective function equaling to 3.38 km/s is still a level that other swarm intelligent algorithms cannot easily reach.


翻译:行星间转移轨迹设计极敏感且高度非线性搜索空间极不敏感,这给全球优化带来了巨大的挑战。作为一名代表,很难找到欧洲空间局(欧空局)设计的全球轨迹优化问题(GTOP)目前已知的最佳解决方案(GTOP ) 。为了应对这一难题,本文件提议了一个名为“合作差异化演进”的强大的不同进化优化工具(CODE ) 。 CODE 使用一个两个阶段的演化过程,其重点是在早期进程中学习全球结构,并容易自适应地学习不同地方空间的结构。此外,考虑到全球在不同问题上的最佳空间分布,以及不同变量的梯度信息,还采用了多种边界检查技术。此外,为了应对这一困难,使用一个叫作“合作不同进化战略(CMA-ES)”的变异性矩阵优化工具(CMA-ES)作为地方的优化工具。 以前的研究表明,特定的暖智能优化算法通常只能解决一两个GTOP问题。 然而,实验结果显示,CODE仍然可以直接找到已知的卡西尼1和萨加斯公司的最佳解决方案,而且与CMA-ES-ES-ASloblental 3级的最佳解决方案的合作无法找到最佳解决方案。

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
52+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年6月6日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员