P-time event graphs (P-TEGs) are specific timed discrete-event systems, in which the timing of events is constrained by intervals. An important problem is to check, for all natural numbers $d$, the existence of consistent $d$-periodic trajectories for a given P-TEG. In graph theory, the Proportional-Inverse-Constant-Non-positive Circuit weight Problem (PIC-NCP) consists in finding all the values of a parameter such that a particular parametric weighted directed graph does not contain circuits with positive weight. In a related paper, we have proposed a strongly polynomial algorithm that solves the PIC-NCP in lower worst-case complexity compared to other algorithms reported in literature. In the present paper, we show that the first problem can be formulated as an instance of the second; consequently, we prove that the same algorithm can be used to find $d$-periodic trajectories in P-TEGs. Moreover, exploiting the connection between the PIC-NCP and max-plus algebra we prove that, given a P-TEG, the existence of a consistent 1-periodic trajectory of a certain period is a necessary and sufficient condition for the existence of a consistent $d$-periodic trajectory of the same period, for any value of $d$.
翻译:P-时间事件图(P-TEGs)是特定的时间分解活动系统,其中事件的时间间隔受时间间隔限制,一个重要问题是对所有自然数字的美元进行检查,以核对某一个P-TEG是否有一致的美元周期轨迹。在图表理论中,比例-反时-非中性巡回权重问题(PIC-NCP)是指找到某一参数的所有值,使某一参数的参数加权对称方向图不包含正重电路段。在一份相关文件中,我们提出了一种强烈的多元算法,该算法与文献中报告的其他算法相比,在最坏的复杂度较低的情况下解决了石化-NCP。在本文件中,我们表明第一个问题可以作为第二个实例出现;因此,我们证明,在P-TEGs中可以使用同样的算法来找到美元周期轨迹。此外,利用石化-NCP和最大正值平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平时段之间存在一个持续的时期,因为一定的周期是P-时段段段段段段段段段段段。