This paper proposes a new method that fuses acoustic measurements in the reverberation field and low-accuracy inertial measurement unit (IMU) motion reports for simultaneous localization and mapping (SLAM). Different from existing studies that only use acoustic data for direction-of-arrival (DoA) estimates, the source's distance from sensors is calculated with the direct-to-reverberant energy ratio (DRR) and applied as a new constraint to eliminate the nonlinear noise from motion reports. A particle filter is applied to estimate the critical distance, which is key for associating the source's distance with the DRR. A keyframe method is used to eliminate the deviation of the source position estimation toward the robot. The proposed DoA-DRR acoustic SLAM (D-D SLAM) is designed for three-dimensional motion and is suitable for most robots. The method is the first acoustic SLAM algorithm that has been validated on a real-world indoor scene dataset that contains only acoustic data and IMU measurements. Compared with previous methods, D-D SLAM has acceptable performance in locating the robot and building a source map from a real-world indoor dataset. The average location accuracy is 0.48 m, while the source position error converges to less than 0.25 m within 2.8 s. These results prove the effectiveness of D-D SLAM in real-world indoor scenes, which may be especially useful in search and rescue missions after disasters where the environment is foggy, i.e., unsuitable for light or laser irradiation.
翻译:本文提出一种新的方法,将声学测量结合到回旋场和低精度惯性测量单位(IMU)运动报告中,以便同时进行本地化和绘图(SLAM) 。 不同于现有的研究,即仅使用声学数据进行抵达方向(DoA)估计,源与传感器的距离是用直接到反射能量比率(DRR)计算的,并作为一种新的制约因素用于消除运动报告中的非线性噪音。 粒子过滤器用于估计关键距离,这是将源距离与DR(DR)联系起来的关键。 使用一个关键框架方法消除源位置对机器人的偏差。 拟议的DoA-DRR声学SLAM(D-D SLM)的声学数据为三维运动设计,适合大多数机器人。 这种方法是第一个在现实世界室内现场数据集中验证的SLAM算法,其中可能只有声学数据和IMUM测量。 与以往的方法相比,D-DSLM在将机器人定位和构建源定位为真实的直径定位方面的表现可以接受,在实际搜索位置上,在真实的MA-ral-ral的图像中,在实际定位中,在实际定位中,在真实的地面上,这些定位中,这些直径差中,这些定位是准确度上,在实际的SLALALAMALM的测距差是比。