Reconfiguration schedules, i.e., sequences that gradually transform one solution of a problem to another while always maintaining feasibility, have been extensively studied. Most research has dealt with the decision problem of whether a reconfiguration schedule exists, and the complexity of finding one. A prime example is the reconfiguration of vertex covers. We initiate the study of batched vertex cover reconfiguration, which allows to reconfigure multiple vertices concurrently while requiring that any adversarial reconfiguration order within a batch maintains feasibility. The latter provides robustness, e.g., if the simultaneous reconfiguration of a batch cannot be guaranteed. The quality of a schedule is measured by the number of batches until all nodes are reconfigured, and its cost, i.e., the maximum size of an intermediate vertex cover. To set a baseline for batch reconfiguration, we show that for graphs belonging to one of the classes $\{\mathsf{cycles, trees, forests, chordal, cactus, even\text{-}hole\text{-}free, claw\text{-}free}\}$, there are schedules that use $O(\varepsilon^{-1})$ batches and incur only a $1+\varepsilon$ multiplicative increase in cost over the best sequential schedules. Our main contribution is to compute such batch schedules in $O(\varepsilon^{-1}\log^* n)$ distributed time, which we also show to be tight. Further, we show that once we step out of these graph classes we face a very different situation. There are graph classes on which no efficient distributed algorithm can obtain the best (or almost best) existing schedule. Moreover, there are classes of bounded degree graphs which do not admit any reconfiguration schedules without incurring a large multiplicative increase in the cost at all.
翻译:重新配置计划, 也就是说, 将问题的一个解决方案逐渐转换为另一个解决方案, 同时保持可行性的序列, 已经进行了广泛的研究 。 大多数研究已经解决了重新配置计划是否存在的决断问题, 以及找到一个的复杂程度 。 一个主要的例子就是顶层覆盖的重新配置 。 我们开始对分批的顶层覆盖重新配置进行研究, 从而可以同时重新配置多个顶部, 同时要求批量中的任何对称重组命令保持可行性 。 后者提供了稳健性, 比如, 如果一组的同步重组无法保证。 时间表的质量不是用批次数量来测量, 直到所有的节点重新配置计划都存在, 以及它的成本。 为了设定批次重组的基线, 我们显示, 对于属于某类的图形, 树, 森林, 圆形, cactuserus, eventele, eventele, teventele, comlifle, we develople, listal a more, $OO\\\qual passallates, we a more, ro dre ral ro drelateralslationslate, rolate, revalslateslate, 我们 ro ro ro ro ro rolateslateslateslatesl rol) ro rol rolatesl rol rol rol rolatesl ro rol rol rol) 。 我们这些图表中, 我们这些图表中, 我们这些图表中, rocalslateslatesl 。 我们只能只能在多少。我们的图表中, 。 。 。我们这些图表中, 。我们这些图表中, 。我们的顺序中, 。 。我们这些图表中, 我们 。我们只能只能只能在多少。 。 。 。 。我们这些图表中, 我们 rocall_ rocallllllllllllll 。我们这些图表中, rocalsllllllllll 。我们的图表中, rocalsl 。我们只能在