Explainable AI (XAI) is slowly becoming a key component for many AI applications. Rule-based and modified backpropagation XAI approaches however often face challenges when being applied to modern model architectures including innovative layer building blocks, which is caused by two reasons. Firstly, the high flexibility of rule-based XAI methods leads to numerous potential parameterizations. Secondly, many XAI methods break the implementation-invariance axiom because they struggle with certain model components, e.g., BatchNorm layers. The latter can be addressed with model canonization, which is the process of re-structuring the model to disregard problematic components without changing the underlying function. While model canonization is straightforward for simple architectures (e.g., VGG, ResNet), it can be challenging for more complex and highly interconnected models (e.g., DenseNet). Moreover, there is only little quantifiable evidence that model canonization is beneficial for XAI. In this work, we propose canonizations for currently relevant model blocks applicable to popular deep neural network architectures,including VGG, ResNet, EfficientNet, DenseNets, as well as Relation Networks. We further suggest a XAI evaluation framework with which we quantify and compare the effect sof model canonization for various XAI methods in image classification tasks on the Pascal-VOC and ILSVRC2017 datasets, as well as for Visual Question Answering using CLEVR-XAI. Moreover, addressing the former issue outlined above, we demonstrate how our evaluation framework can be applied to perform hyperparameter search for XAI methods to optimize the quality of explanations.


翻译:解释性 AI(XAI)正逐渐成为许多 AI 应用的关键组成部分。基于规则和改进的反向传播 XAI 方法在应用于现代模型架构(包括创新的层构建块)时经常面临困难,这是由两个原因引起的。首先,基于规则的 XAI 方法的高度灵活性导致可能的参数组合数众多。其次,许多 XAI 方法破坏了实现不变性公理,因为它们难以处理某些模型组件,例如 BatchNorm 层。后者可以通过模型规范化来解决,即重新构造模型以忽略问题组件,而不改变底层函数。虽然模型规范化对于简单的架构(例如 VGG,ResNet)是简单直接的,但对于更复杂和高度互联的模型(例如 DenseNet)来说可能具有挑战性。此外,目前对于模型规范化对于 XAI 带来益处的量化证据还很少。在这项工作中,我们提出了适用于流行的深度神经网络体系结构(包括 VGG,ResNet,EfficientNet,DenseNets 以及 Relation Networks)的当前重要模型块的规范化方法。我们进一步提出了 XAI 评估框架,通过该框架可以量化并比较模型规范化对于各种 XAI 方法在 Pascal-VOC 和 ILSVRC2017 数据集上进行的图像分类任务以及使用 CLEVR-XAI 进行的视觉问答的影响。而且,解决了上述的问题,我们证明了如何应用我们的评估框架来执行 XAI 方法的超参数搜索以优化解释质量。

0
下载
关闭预览

相关内容

【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
胶囊网络(Capsule Network)在文本分类中的探索
PaperWeekly
13+阅读 · 2018年4月5日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月14日
VIP会员
相关VIP内容
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
胶囊网络(Capsule Network)在文本分类中的探索
PaperWeekly
13+阅读 · 2018年4月5日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员