There has been an increasing interest in harnessing deep learning to tackle combinatorial optimization (CO) problems in recent years. Typical CO deep learning approaches leverage the problem structure in the model architecture. Nevertheless, the model selection is still mainly based on the conventional machine learning setting. Due to the discrete nature of CO problems, a single model is unlikely to learn the problem entirely. We introduce ZTop, which stands for Zero Training Overhead Portfolio, a simple yet effective model selection and ensemble mechanism for learning to solve combinatorial problems. ZTop is inspired by algorithm portfolios, a popular CO ensembling strategy, particularly restart portfolios, which periodically restart a randomized CO algorithm, de facto exploring the search space with different heuristics. We have observed that well-trained models acquired in the same training trajectory, with similar top validation performance, perform well on very different validation instances. Following this observation, ZTop ensembles a set of well-trained models, each providing a unique heuristic with zero training overhead, and applies them, sequentially or in parallel, to solve the test instances. We show how ZTopping, i.e., using a ZTop ensemble strategy with a given deep learning approach, can significantly improve the performance of the current state-of-the-art deep learning approaches on three prototypical CO domains, the hardest unique-solution Sudoku instances, challenging routing problems, and the graph maximum cut problem, as well as on multi-label classification, a machine learning task with a large combinatorial label space.


翻译:近年来,人们越来越有兴趣利用深层次的学习来解决组合优化(CO)问题。典型的CO深层次的学习方法在模型架构中利用了问题结构。然而,模型选择仍然主要基于常规的机器学习环境。由于CO问题的不同性质,单一的模式不大可能完全了解问题。我们引入了ZTop,它代表零培训超额组合,它是一个简单而有效的模式选择和组合机制,用于学习解决组合优化问题。ZTop的灵感来自算法组合,一个受欢迎的CO混合组合战略,特别是重新启动组合,它定期重启随机化的CO算法,事实上是用不同的偏差来探索搜索空间。我们观察到,在相同的培训轨迹中获得的经过良好训练的模式,其顶级验证性能非常不同。在观察之后,ZTop将一套经过良好训练的模型组合,每个模型都提供独特的超额的超额结构化的多层次分类任务管理,并按顺序或平行应用它们来解决当前三次测试案例。我们发现,如何以最具挑战性的轨道化的方法来大幅地改进高层次的轨道的轨道学习。我们学习了最新的空间战略。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月15日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月26日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关VIP内容
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
60+阅读 · 2019年8月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
4+阅读 · 2018年11月15日
相关论文
Arxiv
10+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月26日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
17+阅读 · 2018年4月2日
Arxiv
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员