Our paper identifies a trade-off when using regression adjustments (RAs) in causal inference under covariate-adaptive randomizations (CARs). On one hand, RAs can improve the efficiency of causal estimators by incorporating information from covariates that are not used in the randomization. On the other hand, RAs can degrade estimation efficiency due to their estimation errors, which are not asymptotically negligible when the number of regressors is of the same order as the sample size. Failure to account for the cost of RAs can result in over-rejection of causal inference under the null hypothesis. To address this issue, we develop a unified inference theory for the regression-adjusted average treatment effect (ATE) estimator under CARs. Our theory has two key features: (1) it ensures the exact asymptotic size under the null hypothesis, regardless of whether the number of covariates is fixed or diverges at most at the rate of the sample size, and (2) it guarantees weak efficiency improvement over the ATE estimator with no adjustments.
翻译:我们的论文确定了在协变量自适应随机化 (CARs) 下在使用回归调整 (RAs) 进行因果推断时的权衡。一方面,RAs 可以通过结合未在随机化中使用的协变量信息来提高因果估计器的效率。另一方面,由于回归调整的估计误差与回归器的数量同样级别且不是渐近忽略的,RAs 可以降低估计效率。如果没有考虑 RAs 的代价,可能会导致在零假设下过度拒绝因果推断。为了解决这个问题,我们在 CARs 下为回归调整平均处理效应估计器 (ATE) 开发了统一的推理理论。我们的理论具有两个关键特点:(1) 无论协变量数量固定还是以样本大小的速度发散,它都确保了零假设下的精确渐近大小,(2) 它保证比没有调整的 ATE 估计器具有弱效率提升。