We present a novel framework for finding a set of tight bounding boxes of a 3D shape via neural-network-based over-segmentation and iterative merging and refinement. Achieving tight bounding boxes of a shape while guaranteeing the complete boundness is an essential task for efficient geometric operations and unsupervised semantic part detection, but previous methods fail to achieve both full coverage and tightness. Neural-network-based methods are not suitable for these goals due to the non-differentiability of the objective, and also classic iterative search methods suffer from their sensitivity to the initialization. We demonstrate that the best integration of the learning-based and iterative search methods can achieve the bounding boxes with both properties. We employ an existing unsupervised segmentation network to \textbf{split} the shape and obtain over-segmentation. Then, we apply hierarchical \textbf{merging} with our novel tightness-aware merging and stopping criteria. To overcome the sensitivity to the initialization, we also \textbf{refine} the bounding box parameters in a game setup with a soft reward function promoting a wider exploration. Lastly, we further improve the bounding boxes with a MCTS-based multi-action space exploration. Our experimental results demonstrate the full coverage, tightness, and the adequate number of bounding boxes of our method.
翻译:我们提出一种新的框架,通过基于神经网络的过度分割和迭代合并和细化来找到一个三维形状的一组紧密边界框。在保证完整性的同时,实现形状的紧密边界框是高效几何操作和无监督语义部件检测的重要任务,但是以前的方法不能同时实现完整覆盖和紧密性。由于目标不可微分,基于神经网络的方法不适合实现这些目标,而经典的迭代搜索方法也因其对初始化的敏感性而遭受失败。我们证明了最佳的基于学习和迭代搜索方法整合可以实现同时具备这两种性质的边界框。我们利用现有的无监督分割网络来将形状进行“拆分”,并获得过度分割。然后,我们应用分层的“合并”方法,使用我们的新颖的紧密度感知合并和停止准则。为了克服对初始化的敏感性,我们还在一种游戏设定中用软奖励函数改善边界框参数,促进更广泛的探索。最后,我们使用基于蒙特卡罗树搜索的多动作空间探索进一步改善了边界框。我们的实验结果证明了我们方法的完整覆盖、紧密性和适当数量的边界框。