Background and Objective: Heterogeneous complex networks are large graphs consisting of different types of nodes and edges. The knowledge extraction from these networks is complicated. Moreover, the scale of these networks is steadily increasing. Thus, scalable methods are required. Methods: In this paper, two distributed label propagation algorithms for heterogeneous networks, namely DHLP-1 and DHLP-2 have been introduced. Biological networks are one type of the heterogeneous complex networks. As a case study, we have measured the efficiency of our proposed DHLP-1 and DHLP-2 algorithms on a biological network consisting of drugs, diseases, and targets. The subject we have studied in this network is drug repositioning but our algorithms can be used as general methods for heterogeneous networks other than the biological network. Results: We compared the proposed algorithms with similar non-distributed versions of them namely MINProp and Heter-LP. The experiments revealed the good performance of the algorithms in terms of running time and accuracy.
翻译:背景和目标:不同种类的复杂网络是大型图表,由不同类型的节点和边缘组成。从这些网络中提取的知识是复杂的。此外,这些网络的规模正在稳步扩大。因此,需要采用可扩展的方法。方法:在本文件中,为多种网络引入了两种分布式标签传播算法,即DHLP-1和DHLP-2。生物网络是多种复杂网络的一种类型。作为案例研究,我们测量了我们提议的DHLP-1和DHLP-2算法在由毒品、疾病和目标组成的生物网络中的效率。我们在这个网络中研究的主题是药物重新定位,但我们的算法可以用作除生物网络以外的不同网络的一般方法。结果:我们比较了拟议的算法与类似的非分布式(MINProp和Heter-LP)的算法。实验揭示了算法在运行时间和准确性方面的良好表现。