We present a methodology for formulating simplifying abstractions in machine learning systems by identifying and harnessing the utility structure of decisions. Machine learning tasks commonly involve high-dimensional output spaces (e.g., predictions for every pixel in an image or node in a graph), even though a coarser output would often suffice for downstream decision-making (e.g., regions of an image instead of pixels). Developers often hand-engineer abstractions of the output space, but numerous abstractions are possible and it is unclear how the choice of output space for a model impacts its usefulness in downstream decision-making. We propose a method that configures the output space automatically in order to minimize the loss of decision-relevant information. Taking a geometric perspective, we formulate a step of the algorithm as a projection of the probability simplex, termed fold, that minimizes the total loss of decision-related information in the H-entropy sense. Crucially, learning in the abstracted outcome space requires less data, leading to a net improvement in decision quality. We demonstrate the method in two domains: data acquisition for deep neural network training and a closed-loop wildfire management task.
翻译:面向决策的学习的理想抽象
我们提出了一种机器学习系统简化抽象的方法,通过识别和利用决策的实用结构。机器学习任务通常涉及高维输出空间(例如,图像中的每个像素或图形中的每个节点的预测),尽管较粗略的输出对下游决策-making(例如,图像中的区域而不是像素)通常足够。开发人员经常手动构建输出空间的抽象,但是存在许多可能的抽象,选择模型的输出空间如何影响其在下游决策制定中的实用性尚不清楚。我们提出了一种方法,通过自动配置输出空间来最小化决策相关信息的损失,从而形成抽象。采用几何角度,我们将算法的一步公式化为概率单形体的投影(称为fold),从而按照H-Entropy意义最小化决策相关信息的总损失。关键是,在抽象的结果空间中学习需要更少的数据,从而提高了决策质量。我们在两个领域演示了该方法:用于深度神经网络训练的数据采集以及封闭式野火管理任务。