Training datasets for semantic parsing are typically small due to the higher expertise required for annotation than most other NLP tasks. As a result, models for this application usually need additional prior knowledge to be built into the architecture or algorithm. The increased dependency on human experts hinders automation and raises the development and maintenance costs in practice. This work investigates whether a generic transformer-based seq2seq model can achieve competitive performance with minimal code-generation-specific inductive bias design. By exploiting a relatively sizeable monolingual corpus of the target programming language, which is cheap to mine from the web, we achieved 81.03% exact match accuracy on Django and 32.57 BLEU score on CoNaLa. Both are SOTA to the best of our knowledge. This positive evidence highlights a potentially easier path toward building accurate semantic parsers in practice.
翻译:语义分解培训数据集通常很小,因为注释所需的专门知识比其他大多数非常规语言任务要高。 因此,这种应用模式通常需要更多先前的知识才能纳入结构或算法。 对人类专家的日益依赖会妨碍自动化,提高实际开发和维护成本。 这项工作调查基于通用变压器的后继2seq模型能否以最低代码生成特定诱导偏差设计实现竞争性性能。 通过利用相对可观的单语版的目标编程语言,我们从网络上找到对我来说便宜的语言,在Django和ConaLa的32. 03% BLEU得分上实现了精确匹配。 两者都是我们最了解的SOTA。 这一积极证据突显了在实践中建立准确的语义分析器的一条可能比较容易的道路。