Providing suitable recommendations is of vital importance to improve the user satisfaction of music recommender systems. Here, users often listen to the same track repeatedly and appreciate recommendations of the same song multiple times. Thus, accounting for users' relistening behavior is critical for music recommender systems. In this paper, we describe a psychology-informed approach to model and predict music relistening behavior that is inspired by studies in music psychology, which relate music preferences to human memory. We adopt a well-established psychological theory of human cognition that models the operations of human memory, i.e., Adaptive Control of Thought-Rational (ACT-R). In contrast to prior work, which uses only the base-level component of ACT-R, we utilize five components of ACT-R, i.e., base-level, spreading, partial matching, valuation, and noise, to investigate the effect of five factors on music relistening behavior: (i) recency and frequency of prior exposure to tracks, (ii) co-occurrence of tracks, (iii) the similarity between tracks, (iv) familiarity with tracks, and (v) randomness in behavior. On a dataset of 1.7 million listening events from Last.fm, we evaluate the performance of our approach by sequentially predicting the next track(s) in user sessions. We find that recency and frequency of prior exposure to tracks is an effective predictor of relistening behavior. Besides, considering the co-occurrence of tracks and familiarity with tracks further improves performance in terms of R-precision. We hope that our work inspires future research on the merits of considering cognitive aspects of memory retrieval to model and predict complex user behavior.


翻译:提供合适的建议对于提高音乐推荐者系统的用户满意度至关重要。 在这里, 用户经常反复听到相同的音轨, 并欣赏同一歌曲多次提出的建议。 因此, 计算用户的重新列表行为对于音乐推荐者系统至关重要 。 在本文中, 我们描述一种心理学知情的模型和预测音乐再列表行为的方法, 其灵感来自音乐心理学的研究, 将音乐偏好与人类记忆联系起来。 我们采用了一种成熟的人类认知的心理理论, 以模拟人类记忆的运行, 即: 感知性( ACT- R) 。 与先前的工作相比, 前者只使用 ACT- R 的基础级部分内容。 因此, 我们使用ACT- R 的重新列表行为来计算。 我们使用ACT-R的五个组成部分, 基级, 传播、 传播、 部分匹配、 估值和噪音, 来调查音乐再列表行为的五个因素的影响:(i) 先前接触轨道的耐性能和频率的频率, (ii) 轨道的同步, (iii) 轨道之间的相似性, (iv) 与轨迹对轨道的熟悉, 以及(v) 预感知性) 阅读的预估测过程的预感过程。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
29+阅读 · 2021年8月2日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
专知会员服务
317+阅读 · 2020年11月24日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月4日
Arxiv
0+阅读 · 2021年9月23日
Arxiv
3+阅读 · 2018年10月8日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关VIP内容
专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
29+阅读 · 2021年8月2日
【AAAI2021】记忆门控循环网络
专知会员服务
50+阅读 · 2020年12月28日
专知会员服务
317+阅读 · 2020年11月24日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员