** Pseudo-Boolean monotone functions are unimodal functions which are trivial to optimize for some hillclimbers, but are challenging for a surprising number of evolutionary algorithms (EAs). A general trend is that EAs are efficient if parameters like the mutation rate are set conservatively, but may need exponential time otherwise. In particular, it was known that the $(1+1)$-EA and the $(1+\lambda)$-EA can optimize every monotone function in pseudolinear time if the mutation rate is $c/n$ for some $c<1$, but they need exponential time for some monotone functions for $c>2.2$. The second part of the statement was also known for the $(\mu+1)$-EA. In this paper we show that the first statement does not apply to the $(\mu+1)$-EA. More precisely, we prove that for every constant $c>0$ there is a constant integer $\mu_0$ such that the $(\mu+1)$-EA with mutation rate $c/n$ and population size $\mu_0\le\mu\le n$ needs superpolynomial time to optimize some monotone functions. Thus, increasing the population size by just a constant has devastating effects on the performance. This is in stark contrast to many other benchmark functions on which increasing the population size either increases the performance significantly, or affects performance mildly. The reason why larger populations are harmful lies in the fact that larger populations may temporarily decrease selective pressure on parts of the population. This allows unfavorable mutations to accumulate in single individuals and their descendants. If the population moves sufficiently fast through the search space, such unfavorable descendants can become ancestors of future generations, and the bad mutations are preserved. Remarkably, this effect only occurs if the population renews itself sufficiently fast, which can only happen far away from the optimum. This is counter-intuitive since usually optimization gets harder as we approach the optimum. **

** Jump functions are the most studied non-unimodal benchmark in the theory of randomized search heuristics, in particular, evolutionary algorithms (EAs). They have significantly improved our understanding of how EAs escape from local optima. However, their particular structure -- to leave the local optimum one can only jump directly to the global optimum -- raises the question of how representative such results are. For this reason, we propose an extended class $\textsc{Jump}_{k,\delta}$ of jump functions that contain a valley of low fitness of width $\delta$ starting at distance $k$ from the global optimum. We prove that several previous results extend to this more general class: for all $k = o(n^{1/3})$ and $\delta < k$, the optimal mutation rate for the $(1+1)$~EA is $\frac{\delta}{n}$, and the fast $(1+1)$~EA runs faster than the classical $(1+1)$~EA by a factor super-exponential in $\delta$. However, we also observe that some known results do not generalize: the randomized local search algorithm with stagnation detection, which is faster than the fast $(1+1)$~EA by a factor polynomial in $k$ on $\textsc{Jump}_k$, is slower by a factor polynomial in $n$ on some $\textsc{Jump}_{k,\delta}$ instances. Computationally, the new class allows experiments with wider fitness valleys, especially when they lie further away from the global optimum. **

** We develop a formal framework for automatic reasoning about the obligations of autonomous cyber-physical systems, including their social and ethical obligations. Obligations, permissions and prohibitions are distinct from a system's mission, and are a necessary part of specifying advanced, adaptive AI-equipped systems. They need a dedicated deontic logic of obligations to formalize them. Most existing deontic logics lack corresponding algorithms and system models that permit automatic verification. We demonstrate how a particular deontic logic, Dominance Act Utilitarianism (DAU), is a suitable starting point for formalizing the obligations of autonomous systems like self-driving cars. We demonstrate its usefulness by formalizing a subset of Responsibility-Sensitive Safety (RSS) in DAU; RSS is an industrial proposal for how self-driving cars should and should not behave in traffic. We show that certain logical consequences of RSS are undesirable, indicating a need to further refine the proposal. We also demonstrate how obligations can change over time, which is necessary for long-term autonomy. We then demonstrate a model-checking algorithm for DAU formulas on weighted transition systems, and illustrate it by model-checking obligations of a self-driving car controller from the literature. **

** In this work, we consider a distributed online convex optimization problem, with time-varying (potentially adversarial) constraints. A set of nodes, jointly aim to minimize a global objective function, which is the sum of local convex functions. The objective and constraint functions are revealed locally to the nodes, at each time, after taking an action. Naturally, the constraints cannot be instantaneously satisfied. Therefore, we reformulate the problem to satisfy these constraints in the long term. To this end, we propose a distributed primal-dual mirror descent based approach, in which the primal and dual updates are carried out locally at all the nodes. This is followed by sharing and mixing of the primal variables by the local nodes via communication with the immediate neighbors. To quantify the performance of the proposed algorithm, we utilize the challenging, but more realistic metrics of dynamic regret and fit. Dynamic regret measures the cumulative loss incurred by the algorithm, compared to the best dynamic strategy. On the other hand, fit measures the long term cumulative constraint violations. Without assuming the restrictive Slater's conditions, we show that the proposed algorithm achieves sublinear regret and fit under mild, commonly used assumptions. **

** An intersection digraph is a digraph where every vertex $v$ is represented by an ordered pair $(S_v, T_v)$ of sets such that there is an edge from $v$ to $w$ if and only if $S_v$ and $T_w$ intersect. An intersection digraph is reflexive if $S_v\cap T_v\neq \emptyset$ for every vertex $v$. Compared to well-known undirected intersection graphs like interval graphs and permutation graphs, not many algorithmic applications on intersection digraphs have been developed. Motivated by the successful story on algorithmic applications of intersection graphs using a graph width parameter called mim-width, we introduce its directed analogue called `bi-mim-width' and prove that various classes of reflexive intersection digraphs have bounded bi-mim-width. In particular, we show that as a natural extension of $H$-graphs, reflexive $H$-digraphs have linear bi-mim-width at most $12|E(H)|$, which extends a bound on the linear mim-width of $H$-graphs [On the Tractability of Optimization Problems on $H$-Graphs. Algorithmica 2020]. For applications, we introduce a novel framework of directed versions of locally checkable problems, that streamlines the definitions and the study of many problems in the literature and facilitates their common algorithmic treatment. We obtain unified polynomial-time algorithms for these problems on digraphs of bounded bi-mim-width, when a branch decomposition is given. Locally checkable problems include Kernel, Dominating Set, and Directed $H$-Homomorphism. **

** In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in $O(1/\sqrt{t})$, the structure of the communication network only impacts a second-order term in $O(1/t)$, where $t$ is time. In other words, the error due to limits in communication resources decreases at a fast rate even in the case of non-strongly-convex objective functions. Under the global regularity assumption, we provide a simple yet efficient algorithm called distributed randomized smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where $d$ is the underlying dimension. **