In many classification tasks there is a requirement of monotonicity. Concretely, if all else remains constant, increasing (resp. decreasing) the value of one or more features must not decrease (resp. increase) the value of the prediction. Despite comprehensive efforts on learning monotonic classifiers, dedicated approaches for explaining monotonic classifiers are scarce and classifier-specific. This paper describes novel algorithms for the computation of one formal explanation of a (black-box) monotonic classifier. These novel algorithms are polynomial in the run time complexity of the classifier and the number of features. Furthermore, the paper presents a practically efficient model-agnostic algorithm for enumerating formal explanations.
翻译:在许多分类任务中,都要求单调。具体地说,如果所有其他因素保持不变,增加(减少)一个或一个以上特性的价值不能降低(增加)预测值。尽管在学习单调分类器方面作出了全面努力,但解释单调分类器的专门方法很少,而且有分类器的特性。本文描述了计算一个(黑盒子)单调分类器的一种正式解释的新算法。这些小说算法在分类器运行的复杂时间和特征数量中是多元的。此外,本文还提出了一种实际有效的计算正式解释的模型-不可知性算法。