Fog computing is a promising paradigm for real-time and mission-critical Internet of Things (IoT) applications. Regarding the high distribution, heterogeneity, and limitation of fog resources, applications should be placed in a distributed manner to fully utilize these resources. In this paper, we propose a linear formulation for assuring the different availability requirements of application services while maximizing the utilization of fog resources. We also compare three multiobjective evolutionary algorithms, namely MOPSO, NSGA-II, and MOEA/D for a trade-off between the mentioned optimization goals. The evaluation results in the iFogSim simulator demonstrate the efficiency of all three algorithms and a generally better behavior of MOPSO algorithm in terms of obtained objective values, application deadline satisfaction, and execution time.
翻译:雾计算是实时和任务关键物(IoT)互联网应用的一个很有希望的范例。关于雾资源的高分布、异质性和限制,应用应用应以分布方式进行,以充分利用这些资源。在本文件中,我们提议了一条线性配方,以确保应用服务有不同的可用性要求,同时最大限度地利用雾资源。我们还比较了三种多目标进化算法,即MOSO、NSGA-II和MOEA/D,以权衡上述优化目标。iFogSim模拟器的评价结果显示所有三种算法的效率,以及MOSO算法在客观价值、应用期限满意度和执行时间方面的普遍较好的行为。