We provide an explicit analysis of the dynamics of vanilla gradient descent for deep matrix factorization in a setting where the minimizer of the loss function is unique. We show that the recovery rate of ground-truth eigenvectors is proportional to the magnitude of the corresponding eigenvalues and that the differences among the rates are amplified as the depth of the factorization increases. For exactly characterized time intervals, the effective rank of gradient descent iterates is provably close to the effective rank of a low-rank projection of the ground-truth matrix, such that early stopping of gradient descent produces regularized solutions that may be used for denoising, for instance. In particular, apart from few initial steps of the iterations, the effective rank of our matrix is monotonically increasing, suggesting that "matrix factorization implicitly enforces gradient descent to take a route in which the effective rank is monotone". Since empirical observations in more general scenarios such as matrix sensing show a similar phenomenon, we believe that our theoretical results shed some light on the still mysterious "implicit bias" of gradient descent in deep learning.


翻译:我们明确分析香草梯度下沉的动态,以便在损失功能最小化的独特环境下进行深层矩阵化。我们表明,地面精度的恢复率与相应的精度值的大小成正比,而且随着因子化深度的增加,不同率之间的差别会扩大。对于精确的时段间隔,坡梯度下沉的延绳的有效等级可以明显接近于低水平地面精度矩阵投影的有效等级,例如尽早停止梯度下沉可产生常规化的解决方案,例如可用于除去。特别是,除了迭代的最初步骤很少之外,我们矩阵的有效等级是单调式的,这意味着“矩阵化隐含着梯度下坠,以采取有效阶梯度为单调的路线”。由于在诸如矩阵感测等更为笼统的假设中进行的经验观测表明类似现象,我们认为,我们的理论结果揭示了在深层学习中梯度下降时仍然神秘的“不准确的偏差”现象。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
6+阅读 · 2020年12月8日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员