Ultrasound can power implanted medical devices. This paper evaluates its feasibility for microscopic robots in tissue that mechanically harvest energy using pistons. At these sizes, viscous drag dominates the piston motion and acoustic attenuation limits how far power can reach. Combining these factors shows that frequencies around 100kHz can deliver hundreds of picowatts to well-separated micron-size robots in low-attenuation tissues within about 10cm of the skin. However, applications of microscopic robots could involve large numbers, in which case the robots themselves significantly increase acoustic attenuation. Robots can mitigate this attenuation using cooperative swarm behaviors, with trade-offs among individual power, group performance and the complexity of the robot controllers. With such mitigating behaviors, acoustic power can be useful for swarms of a few hundred billion robots in the body, that each use tens of picowatts, on average, and can tolerate significant variability in available power, e.g, as robots in the bloodstream move from near the skin to deep within the body, or from low- to high-attenuation tissue such as the lungs.
翻译:超声波可以给植入的医疗设备提供动力。 本文评估了微小机器人在使用活塞来机械地采集能量的组织中对微小机器人的可行性。 在这种尺寸上, 粘力拖动控制着活性运动和声学减弱的极限。 综合这些因素表明, 大约 100kHz 的频率可以向皮肤约10厘米的低衰减组织中精密分离的微小机器人提供数百个微小机器人。 然而, 微小机器人的应用可能涉及大量数量, 这样机器人本身就大大增加了减速声。 机器人可以通过合作的电温行为来减轻这种减速, 个人电力、 群体性能和机器人控制器的复杂性之间的权衡。 有了这种减轻力的行为, 声力对于身体中数千亿个机器人的群来说是有用的, 每一个平均使用数十个微瓦, 并且可以容忍从低层到深层的体中, 机器人, 从低层到低层, 高层, 移动到高层, 等机器人, 从低层到高层, 移动到高层。