Goal: This paper presents an algorithm for estimating pelvis, thigh, shank, and foot kinematics during walking using only two or three wearable inertial sensors. Methods: The algorithm makes novel use of a Lie-group-based extended Kalman filter. The algorithm iterates through the prediction (kinematic equation), measurement (pelvis position pseudo-measurements, zero-velocity update, and flat-floor assumption), and constraint update (hinged knee and ankle joints, constant leg lengths). Results: The inertial motion capture algorithm was extensively evaluated on two datasets showing its performance against two standard benchmark approaches in optical motion capture (i.e., plug-in gait (commonly used in gait analysis) and a kinematic fit (commonly used in animation, robotics, and musculoskeleton simulation)), giving insight into the similarity and differences between the said approaches used in different application areas. The overall mean body segment position (relative to mid-pelvis origin) and orientation error magnitude of our algorithm ($n=14$ participants) for free walking was $5.93 \pm 1.33$ cm and $13.43 \pm 1.89^\circ$ when using three IMUs placed on the feet and pelvis, and $6.35 \pm 1.20$ cm and $12.71 \pm 1.60^\circ$ when using only two IMUs placed on the feet. Conclusion: The algorithm was able to track the joint angles in the sagittal plane for straight walking well, but requires improvement for unscripted movements (e.g., turning around, side steps), especially for dynamic movements or when considering clinical applications. Significance: This work has brought us closer to comprehensive remote gait monitoring using IMUs on the shoes. The low computational cost also suggests that it can be used in real-time with gait assistive devices.
翻译:目标 : 本文展示了一种算法, 用于使用两个或三个磨损惯性传感器来估计骨盆、 大腿、 腿、 腿和脚部运动。 方法 : 算法使以利组为基础的利组扩展 Kalman 过滤器具有新意。 算法通过预测( 皮肤方程式)、 测量( 骨架位置假测量、 零速度更新和 平底假设) 和限制更新( 膝盖和脚踝关节、 腿长度不变 ) 来评估行走期间的惯性。 结果 : 两个数据集对惯性运动的性能进行了广泛评估, 显示其与光动的两种标准基准方法( e., 插在毛表分析中通常使用) 。 用于自由行走的惯性动作( 直径( 直径) 直径( 直径) 直径( 直) 直方向( 直径) 和直方向( 直径) 直径( 直径) 直方向( 直径) 直径( 直) 直) 直方向( 直径) 直地( 直) 直) 直地( 直) 直) 直地( 直) 直) 直) 向( 直) 直( 直) 直) 直) 直( ) 直) ( 直) 向( 直) 直) 直) 直) 直) 向( 向( 直) 直) 向) 向),,,,,,,,, 向( 向( 直) ( 直) 直) ( 直) ( ) 直) ( 直) ( ) ) ( 直) ) ) ( ) ) ( ) ) ) ) ( ) ) ) ( ) ( ) ( ) ( 直) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (