Rauzy-type dynamics are group actions on a collection of combinatorial objects. The first and best known example concerns an action on permutations, associated to interval exchange transformations (IET) for the Poincar\'e map on compact orientable translation surfaces. The equivalence classes on the objects induced by the group action are related to components of the moduli spaces of Abelian differentials with prescribed singularities, and, in two variants of the problem, have been classified by Kontsevich and Zorich, and by Boissy, through methods involving both combinatorics and algebraic geometry. We provide here a purely combinatorial proof of both classification theorems, and in passing establish a few previously unnoticed features. As will be shown elsewhere, our methods extend also to other Rauzy-type dynamics, both on labeled and unlabeled structures. Some of these dynamics have a geometrical interpretation (e.g., matchings, related to IET on non-orientable surfaces), while some others do not have one so far.
翻译:rauzy 类型动态是组合对象集合的群集动作。 第一个最著名的例子是与Poincar\'e地图在紧凑的可调整翻译表面上的间交换转换( IET) 相关的对调动作。 组合动作引发的物体的等同类与Abelian 差异的模数空间的组件有关, 且在问题的两个变体中, 由 Kontsevich 和 Zorich 分类, 由Boissy 分类, 采用组合和代数几何法两种方法。 我们在此提供两种分类理论的纯组合式验证, 并顺便建立几个先前不被注意的特征。 如在别处显示的那样, 我们的方法还扩展到其他劳兹型动态, 包括标签和未标的结构。 有些动态有几何解释( 如, 匹配, 与不可调整的表面的 IET有关), 而另一些动态则没有那么远。