We propose ways to speed up the initial pose-graph generation for global Structure-from-Motion algorithms. To avoid forming tentative point correspondences by FLANN and geometric verification by RANSAC, which are the most time-consuming steps of the pose-graph creation, we propose two new methods - built on the fact that image pairs usually are matched consecutively. Thus, candidate relative poses can be recovered from paths in the partly-built pose-graph. We propose a heuristic for the A* traversal, considering global similarity of images and the quality of the pose-graph edges. Given a relative pose from a path, descriptor-based feature matching is made "light-weight" by exploiting the known epipolar geometry. To speed up PROSAC-based sampling when RANSAC is applied, we propose a third method to order the correspondences by their inlier probabilities from previous estimations. The algorithms are tested on 402130 image pairs from the 1DSfM dataset and they speed up the feature matching 17 times and pose estimation 5 times.


翻译:我们建议加快全球结构变化算法的初始造型图生成方法。 为避免FLANN和RANSAC的几何校验(这是造型算法中最耗时的步骤)形成暂时的点对应,我们建议了两种新方法――基于图像配对通常连续相匹配的事实。因此,候选人的相对构成可以从半成形的造型算法中路径中恢复。我们建议了A* 穿行法的超常性,考虑到图像的全球相似性以及造型边缘的质量。鉴于路径的相对性,基于描述的特征匹配通过利用已知的近极地测量法而成为“轻度比重 ” 。为了在使用RANSAC时加快基于PROSAC的采样速度,我们建议了第三个方法,根据它们与先前估算的远近似性概率排列对应的通信。我们用402130对1DSfM数据集的图像配对进行测试,并加快了17倍的地标和5次估算。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Paraphrase Generation with Deep Reinforcement Learning
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员