We show how to store a searchable partial-sums data structure with constant query time for a static sequence $S$ of $n$ positive integers in $o \left( \frac{\log n}{(\log \log n)^2} \right)$, in $n H_k (S) + o (n)$ bits for $k \in o \left( \frac{\log n}{(\log \log n)^2} \right)$. It follows that if a Wheeler graph on $n$ vertices has maximum degree in $o \left( \frac{\log n}{(\log \log n)^2} \right)$, then we can store its in- and out-degree sequences $\Din$ and $\Dout$ in $n H_k (\Din) + o (n)$ and $n H_k (\Dout) + o (n)$ bits, for $k \in o \left( \frac{\log n}{(\log \log n)^2} \right)$, such that querying them for pattern matching in the graph takes constant time.
翻译:我们用恒定序列的恒定查询时间来显示一个可搜索的部分和数据结构。 因此,如果以美元为正整数的惠勒图在美元( $left) (\\ frac\log n}\\\\log\log n)\\2}\right) $( s) + o left (n) 美元 + o (n) 美元) 中存储一个可搜索的部分和数据结构。 如果以美元为正整数的惠勒图在美元( left) 美元( \ fleft (\ frac\log n}\ log n)\\\\\\\\\\\\\right) $( right) 中以美元( 美元 + 美元 (n) 美元 + 美元 (n) 和 美元 h_\ k (\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\