We present a universally-optimal distributed algorithm for the exact weighted min-cut. The algorithm is guaranteed to complete in $\widetilde{O}(D + \sqrt{n})$ rounds on every graph, recovering the recent result of Dory, Efron, Mukhopadhyay, and Nanongkai~[STOC'21], but runs much faster on structured graphs. Specifically, the algorithm completes in $\widetilde{O}(D)$ rounds on (weighted) planar graphs or, more generally, any (weighted) excluded-minor family. We obtain this result by designing an aggregation-based algorithm: each node receives only an aggregate of the messages sent to it. While somewhat restrictive, recent work shows any such black-box algorithm can be simulated on any minor of the communication network. Furthermore, we observe this also allows for the addition of (a small number of) arbitrarily-connected virtual nodes to the network. We leverage these capabilities to design a min-cut algorithm that is significantly simpler compared to prior distributed work. We hope this paper showcases how working within this paradigm yields simple-to-design and ultra-efficient distributed algorithms for global problems. Our main technical contribution is a distributed algorithm that, given any tree $T$, computes the minimum cut that $2$-respects $T$ (i.e., cuts at most $2$ edges of $T$) in universally near-optimal time. Moreover, our algorithm gives a \emph{deterministic} $\widetilde{O}(D)$-round 2-respecting cut solution for excluded-minor families and a \emph{deterministic} $\widetilde{O}(D + \sqrt{n})$-round solution for general graphs, the latter resolving a question of Dory, et al.~[STOC'21]


翻译:我们为精确加权的刻度提出了一个普遍最优化分布的算法 。 算法保证在每张图上以$+\\ sqrt{( D +\ sqrt{ n}) 以美元完成, 恢复Dory、 Efron、 Mukhopadhyay 和 Nanongkai 最近的结果, 在结构化的图表上运行速度要快得多 。 具体地说, 算法在( 重量级) 平面图上以$- 美元( D) 回合完成。 我们通过设计一个基于总基数的算算法( 加权) 来完成这个结果: 每个节数只收到发给它的信件的总数。 虽然有些限制性, 最近的工作显示任何这样的黑盒算法都可以模拟通信网络的任何小部分 。 此外, 我们观察这也允许在网络上添加( 少量) 任意连接的虚拟点数 。 我们利用这些能力来设计一个比先前分配的 $ 美元 更简单的刻度算法 。 我们希望, 在最接近时间 的平面上, 文件会展示我们最简单的算法是如何将多少 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年4月20日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年4月20日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员