This work addresses the inverse kinematics of serial robots using conformal geometric algebra. Classical approaches include either the use of homogeneous matrices, which entails high computational cost and execution time or the development of particular geometric strategies that cannot be generalized to arbitrary serial robots. In this work, we present a compact, elegant and intuitive formulation of robot kinematics based on conformal geometric algebra that provides a suitable framework for the closed-form resolution of the inverse kinematic problem for manipulators with a spherical wrist. For serial robots of this kind, the inverse kinematics problem can be split in two subproblems: the position and orientation problems. The latter is solved by appropriately splitting the rotor that defines the target orientation into three simpler rotors, while the former is solved by developing a geometric strategy for each combination of prismatic and revolute joints that forms the position part of the robot. Finally, the inverse kinematics of 7 DoF redundant manipulators with a spherical wrist is solved by extending the geometric solutions obtained in the non-redundant case.
翻译:这项工作针对的是使用符合几何代数的序列机器人的反动动体。 经典方法包括使用同质矩阵,这需要很高的计算成本和执行时间,或者制定不能普遍适用于任意的序列机器人的特殊几何战略。 在这项工作中,我们提出了一个基于符合几何代数的机器人运动学精细、优雅和直观配方,为使用球状手腕的操纵者提供了一个适当的封闭式解决反动动体问题框架。对于这种类型的序列机器人,反动运动学问题可以分为两个子问题:位置和方向问题。后者通过将确定目标方向的转子适当分割成三个更简单的转子来解决,而前者则通过为构成机器人位置部分的每个组合的振动和再变动组合制定几何战略来解决。 最后,7个具有球状手腕的多F冗余操纵器的反动体,通过扩大在非后方圆形情况下获得的几何测量解决方案来解决。