Physics Informed Neural Networks (PINNs) are gaining attention for their ability to embed physical laws into deep learning models, which is particularly useful in structural engineering tasks with limited data. This paper aims to explore the use of PINNs to predict the weight of small scale spaghetti bridges, a task relevant to understanding load limits and potential failure modes in simplified structural models. Our proposed framework incorporates physics-based constraints to the prediction model for improved performance. In addition to standard PINNs, we introduce a novel architecture named Physics Informed Kolmogorov Arnold Network (PIKAN), which blends universal function approximation theory with physical insights. The structural parameters provided as input to the model are collected either manually or through computer vision methods. Our dataset includes 15 real bridges, augmented to 100 samples, and our best model achieves an $R^2$ score of 0.9603 and a mean absolute error (MAE) of 10.50 units. From applied perspective, we also provide a web based interface for parameter entry and prediction. These results show that PINNs can offer reliable estimates of structural weight, even with limited data, and may help inform early stage failure analysis in lightweight bridge designs. The complete data and code are available at https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges.
翻译:物理信息神经网络(PINNs)因其能够将物理定律嵌入深度学习模型而受到关注,这在数据有限的结构工程任务中尤为有用。本文旨在探索使用PINNs预测小尺度意大利面条桥的承载重量,这一任务有助于理解简化结构模型中的荷载极限与潜在失效模式。我们提出的框架将基于物理的约束纳入预测模型以提升性能。除了标准PINN外,我们引入了一种名为物理信息Kolmogorov-Arnold网络(PIKAN)的新型架构,该架构融合了通用函数逼近理论与物理洞见。输入模型的结构参数通过人工或计算机视觉方法采集。我们的数据集包含15座真实桥梁,扩充至100个样本,最佳模型实现了$R^2$分数0.9603和平均绝对误差(MAE)10.50单位。从应用角度,我们还提供了一个基于网络的参数输入与预测界面。这些结果表明,即使数据有限,PINNs也能提供可靠的结构重量估计,并可能有助于轻质桥梁设计的早期失效分析。完整数据与代码可在https://github.com/OmerJauhar/PINNS-For-Spaghetti-Bridges获取。