Filter pruning is effective to reduce the computational costs of neural networks. Existing methods show that updating the previous pruned filter would enable large model capacity and achieve better performance. However, during the iterative pruning process, even if the network weights are updated to new values, the pruning criterion remains the same. In addition, when evaluating the filter importance, only the magnitude information of the filters is considered. However, in neural networks, filters do not work individually, but they would affect other filters. As a result, the magnitude information of each filter, which merely reflects the information of an individual filter itself, is not enough to judge the filter importance. To solve the above problems, we propose Meta-attribute-based Filter Pruning (MFP). First, to expand the existing magnitude information based pruning criteria, we introduce a new set of criteria to consider the geometric distance of filters. Additionally, to explicitly assess the current state of the network, we adaptively select the most suitable criteria for pruning via a meta-attribute, a property of the neural network at the current state. Experiments on two image classification benchmarks validate our method. For ResNet-50 on ILSVRC-2012, we could reduce more than 50% FLOPs with only 0.44% top-5 accuracy loss.
翻译:过滤过滤器运行有效,可以降低神经网络的计算成本。 现有方法显示, 更新先前的过滤器将允许大型模型能力, 并实现更好的性能。 但是, 在迭代运行过程中, 即使网络重量被更新为新值, 运行标准仍然保持不变 。 此外, 在评估过滤器的重要性时, 只考虑过滤器的大小信息 。 但是, 在神经网络中, 过滤器不会单独运作, 但是会影响其他过滤器 。 因此, 每个过滤器仅反映个人过滤器本身信息的大小信息不足以判断过滤器的重要性 。 为了解决上述问题, 我们提议基于网络重量的Meta- 配给过滤器 Pruning (MFP) 。 首先, 为了扩大基于运行标准的现有数量信息, 我们引入了一套新的标准来考虑过滤器的地理距离 。 此外, 为了明确评估网络的当前状态, 我们适应地选择了最合适的运行标准, 也就是当前状态的神经网络属性, 不足以判断过滤器的重要性。 为了解决上述问题, 我们建议基于Met- atrial- prof- frest real realation 。