One of the most important issues in the image processing is the approximation of the image that has been lost due to the blurring process. These types of matters are divided into non-blind and blind problems. The second type of problem is more complex in terms of calculations than the first problems due to the unknown of original image and point spread function estimation. In the present paper, an algorithm based on coarse-to-fine iterative by $l_0-\alpha l_1$ regularization and framelet transform is introduced to approximate the spread function estimation. Framelet transfer improves the restored kernel due to the decomposition of the kernel to different frequencies. Also in the proposed model fraction gradient operator is used instead of ordinary gradient operator. The proposed method is investigated on different kinds of images such as text, face, natural. The output of the proposed method reflects the effectiveness of the proposed algorithm in restoring the images from blind problems.
翻译:图像处理中最重要的问题之一是由于模糊过程而丢失的图像的近似值。 这些类型的事项被分为非盲和盲问题。 第二种类型的问题在计算方面比最初图像和点分布函数估计未知的最初问题更为复杂。 在本文件中, 引入了一种基于粗到细迭代的算法, 以 $_0- alpha I_ 1$ 和框架变换 来接近扩展函数估计。 Framlet 传输改进了因内核分解到不同频率而恢复的内核。 在拟议的模型分数梯度操作器中, 也使用了而不是普通的梯度操作器。 所拟议的方法在文本、 脸 、 自然 等不同种类的图像上调查。 拟议方法的输出反映了拟议算法在恢复盲人图像方面的有效性 。