We study the design of energy-efficient algorithms for the LOCAL and CONGEST models. Specifically, as a measure of complexity, we consider the maximum, taken over all the edges, or over all the nodes, of the number of rounds at which an edge, or a node, is active in the algorithm. We first show that every Turing-computable problem has a CONGEST algorithm with constant node-activation complexity, and therefore constant edge-activation complexity as well. That is, every node (resp., edge) is active in sending (resp., transmitting) messages for only $O(1)$ rounds during the whole execution of the algorithm. In other words, every Turing-computable problem can be solved by an algorithm consuming the least possible energy. In the LOCAL model, the same holds obviously, but with the additional feature that the algorithm runs in $O(\mbox{poly}(n))$ rounds in $n$-node networks. However, we show that insisting on algorithms running in $O(\mbox{poly}(n))$ rounds in the CONGEST model comes with a severe cost in terms of energy. Namely, there are problems requiring $\Omega(\mbox{poly}(n))$ edge-activations (and thus $\Omega(\mbox{poly}(n))$ node-activations as well) in the CONGEST model whenever solved by algorithms bounded to run in $O(\mbox{poly}(n))$ rounds. Finally, we demonstrate the existence of a sharp separation between the edge-activation complexity and the node-activation complexity in the CONGEST model, for algorithms bounded to run in $O(\mbox{poly}(n))$ rounds. Specifically, under this constraint, there is a problem with $O(1)$ edge-activation complexity but $\tilde{\Omega}(n^{1/4})$ node-activation complexity.


翻译:我们研究LOCAL 和 CONEST 模型的节能算法设计。 具体地说, 作为复杂度的衡量标准, 我们考虑最大范围, 在所有边缘或所有节点上, 一个边缘或节点都活跃在算法中。 我们首先显示, 每一个图灵可计算的问题都有一个具有恒定节点复杂性的 CONEST 算法, 因而也具有恒定边缘激活复杂性。 也就是说, 每个节点( 重复, 边缘) 都在发送( 重复, 在整个算法执行期间, 只能发送 $( O(1) 美元) 的信息。 换句话说, 每个图灵可计算的问题都可以通过一个耗尽最少能量的算法来解决。 在LOCOL 模型中, 同样的特性是, 算法以 $( mbly) 以 $( 美元) 来运行。 然而, 我们显示, 以 $( mbox) 模式运行的运算法, 以 $( 美元 美元) 的 运算 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月20日
Arxiv
0+阅读 · 2023年3月18日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员