Humans have a strong intuitive understanding of the 3D environment around us. The mental model of the physics in our brain applies to objects of different materials and enables us to perform a wide range of manipulation tasks that are far beyond the reach of current robots. In this work, we desire to learn models for dynamic 3D scenes purely from 2D visual observations. Our model combines Neural Radiance Fields (NeRF) and time contrastive learning with an autoencoding framework, which learns viewpoint-invariant 3D-aware scene representations. We show that a dynamics model, constructed over the learned representation space, enables visuomotor control for challenging manipulation tasks involving both rigid bodies and fluids, where the target is specified in a viewpoint different from what the robot operates on. When coupled with an auto-decoding framework, it can even support goal specification from camera viewpoints that are outside the training distribution. We further demonstrate the richness of the learned 3D dynamics model by performing future prediction and novel view synthesis. Finally, we provide detailed ablation studies regarding different system designs and qualitative analysis of the learned representations.
翻译:人类对周围的 3D 环境有着强烈的直觉理解。 我们大脑中物理的心理模型适用于不同材料的物体, 并使我们能够执行目前机器人远远无法完成的广泛操作任务。 在这项工作中, 我们希望学习纯粹来自 2D 视觉观察的动态 3D 场景的模型。 我们的模型将神经辐射场( NeRF) 和时间对比学习与自动编码框架结合起来, 自动编码框架可以学习观点差异 3D- 觉场景的演示。 我们显示, 一个在学习过的演示空间上构建的动态模型, 能够对涉及僵硬体和流体的操作任务提出挑战性控制, 目标在与机器人操作不同的观点中被具体指定。 当与自动解码框架相结合时, 它甚至可以支持在培训分布之外从摄像的角度制定目标规格。 我们通过进行未来的预测和新视图合成, 进一步展示了所学的 3D 动态模型的丰富性。 最后, 我们提供了关于不同系统设计和对所学的图像进行定性分析的详细对比研究。