Non-autoregressive approaches aim to improve the inference speed of translation models by only requiring a single forward pass to generate the output sequence instead of iteratively producing each predicted token. Consequently, their translation quality still tends to be inferior to their autoregressive counterparts due to several issues involving output token interdependence. In this work, we take a step back and revisit several techniques that have been proposed for improving non-autoregressive translation models and compare their combined translation quality and speed implications under third-party testing environments. We provide novel insights for establishing strong baselines using length prediction or CTC-based architecture variants and contribute standardized BLEU, chrF++, and TER scores using sacreBLEU on four translation tasks, which crucially have been missing as inconsistencies in the use of tokenized BLEU lead to deviations of up to 1.7 BLEU points. Our open-sourced code is integrated into fairseq for reproducibility.
翻译:非递减办法的目的是提高翻译模型的推论速度,只要求一个前方传票来生成产出序列,而不是反复制作每个预测的象征物。 因此,由于涉及输出符号相互依存的若干问题,翻译质量往往低于自动递减的对应方。 在这项工作中,我们退一步,重新研究为改进非递减翻译模型而提出的若干技术,比较第三方测试环境中的合并翻译质量和速度影响。 我们为利用长度预测或基于四氯化碳的架构变异来建立强有力的基线提供了新的见解,并为四种翻译任务提供了标准化的BLEU、chrF++和TER评分,这四种翻译任务使用sacrebleU, 关键是缺乏一致性,因为使用代号BLEU会导致高达1.7个BLEU点的偏差。我们的开放源代码被整合为可复制的公平等值。