Given a set of points $P$ and axis-aligned rectangles $\mathcal{R}$ in the plane, a point $p \in P$ is called \emph{exposed} if it lies outside all rectangles in $\mathcal{R}$. In the \emph{max-exposure problem}, given an integer parameter $k$, we want to delete $k$ rectangles from $\mathcal{R}$ so as to maximize the number of exposed points. We show that the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate even when rectangles in $\mathcal{R}$ are translates of two fixed rectangles. However, if $\mathcal{R}$ only consists of translates of a single rectangle, we present a polynomial-time approximation scheme. For range space defined by general rectangles, we present a simple $O(k)$ bicriteria approximation algorithm; that is by deleting $O(k^2)$ rectangles, we can expose at least $\Omega(1/k)$ of the optimal number of points.
翻译:根据一组点 $P$ 和轴对齐矩形 $mathcal{R} $\ mathcal{R}, 如果在$\ mathcal{R} $ 美元中位于所有矩形之外, 则该点被称为 emph{max- 曝光 $。 在 emph{max- 曝光问题} 中, 给一个整数参数 $k$, 我们想要从$\ mathcal{R} 美元中删除 $k$ 的矩形, 以便最大限度地增加曝光点的数量。 我们显示, 问题是硬的, 假设合理的复杂猜想也很难接近 。 但是, 如果 $\ mathcal{R} $ 仅包含单矩形的翻译, 我们提出一个多边时间近似方案。 对于一般矩形定义的范围空间, 我们提出一个简单的 $(k) $(k) 美元 双标准近似的算法 。