Let {\Theta}(p,n) be a program that either loops or returns only true or false. The parameter p is the index of a program P and n is its input. Suppose that {\Theta}(p,n) = true if and only if P halts on n. It follows that if {\Theta}(P,n) = false then P does not halt on n. Let furthermore {\Theta}^(n) = {\Theta}(n,n) and {\Theta}*() = {\Theta}^({\theta}*). The claim is that in the class {\Theta} there exists a program H such that H(h,h*) = false, that is, H proves that it does not prove that H* halts. This has implications for solving the liar paradox and for generalization of G\"odel incompleteness theorem to formal systems other than PA.
翻译:Let {theta}(p,n) 是一个循环或仅返回真实或虚假的程序。 参数 p 是程序 P 和 n 的索引 。 假设 {theta} (p, n) = 只有当 P 停止在 n 上时才为真 。 因此, 如果 {theta} (P, n) = 假, 那么P 就不会停止 。 进一步 {Theta} (n) = ~ Theta} (n) 和 ~ ta {() = ~ Theta} (thta} = ~ {(thta}) = 程序 P & n 输入 。 声称在类中存在一个 H 程序, H (h, h) = 错误, 也就是说, H 证明它不证明 H* 停止 。 这对解决说谎者悖论和G\\ odel 的概括性有影响 。